The nature of solutions of the difference equation $x_n = \max\{A/x_{n-2}, B/x_{n-3} \alpha\}$

A. Gelişken, C. Çınar, R. Karataş, and A. S. Kurbanlı

Citation: AIP Conf. Proc. 1470, 50 (2012); doi: 10.1063/1.4747636
View online: http://dx.doi.org/10.1063/1.4747636
View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1470&Issue=1
Published by the American Institute of Physics.

Related Articles
Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model

A twisted integrable hierarchy with 2 symmetry

Liouville type theorems for nonlinear elliptic equations involving operator in divergence form

Reconstructing acoustic obstacles by planar and cylindrical waves

Invariant manifolds and the geometry of front propagation in fluid flows
Chaos 22, 037104 (2012)

Additional information on AIP Conf. Proc.
Journal Homepage: http://proceedings.aip.org/
Journal Information: http://proceedings.aip.org/about/about_the_proceedings
Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS
Information for Authors: http://proceedings.aip.org/authors/information_for_authors

ADVERTISEMENT

Explore AIP’s new open-access journal

- Article-level metrics now available
- Join the conversation! Rate & comment on articles

Submit Now
The Nature of Solutions of The Difference Equation

\[x_n = \max \left\{ \frac{A}{x_{n-2}}, \frac{B}{x_{n-3}^{\alpha}} \right\} \]

A. Gelişken*, C. Çınar†, R. Karataş** and A. S. Kurbanli‡

*Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey
†Department of Mathematics, Gazi Education Faculty, Gazi University, Ankara, Turkey
**Department of Mathematics, Education Faculty, Akdeniz University, Antalya, Turkey
‡Department of Mathematics, Ahmet Keleşoğlu Education Faculty, N. Erbakan University, Konya, Turkey

Abstract. We consider positive solutions of the difference equation

\[x_n = \max \left\{ \frac{A}{x_{n-2}}, \frac{B}{x_{n-3}^{\alpha}} \right\}, \quad n \geq 0, \]

where \(A \geq 0, B \geq 0, 0 < \alpha \leq 1 \) and the initial conditions \(x_{-1}, x_{-2}, x_{-3} \) are arbitrary positive real numbers. We show that every positive solution of this difference equation approaches \(x = \sqrt{B} \) or is eventually periodic with period 4, 5 or 6. Also, this work confirms partially the conjecture proposed in [18].

Keywords: Max operator, Difference equation, Positive solution, Stability, Periodicity.

PACS: 02.70.Bf, 02.30.Jr

INTRODUCTION

In this paper, we investigate the asymptotic behavior and periodic nature of solutions of the following difference equation

\[x_n = \max \left\{ \frac{A}{x_{n-2}}, \frac{B}{x_{n-3}^{\alpha}} \right\}, \quad n \geq 0, \] (1)

where \(A \geq 0, B \geq 0, 0 < \alpha \leq 1 \) and the initial conditions \(x_{-1}, x_{-2}, x_{-3} \) are arbitrary positive real numbers. We prove that every positive solution of this difference equation approaches \(x = \sqrt{B} \) or is eventually periodic with period 4, 5 or 6. Also, this paper confirms the conjecture proposed in [18] partially.

The Eq. (1) is motivated by the paper [18]. In [18], it was studied the asymptotic behavior of positive solutions of the difference equation

\[x_n = \max \left\{ \frac{1}{x_{n-1}^{\alpha_1}}, \frac{A}{x_{n-2}} \right\}, \quad n \geq 0, \] (2)

where \(0 < \alpha < 1 \) and \(A > 0 \). It was shown that every positive solution of this difference equation approaches \(x = 1 \) or is eventually periodic with period 4. Also, the authors of [18] proposed the following difference equation and conjecture.

\[x_n = \max \left\{ \frac{A_1}{x_{n-1}}, \frac{A_2}{x_{n-2}}, \ldots, \frac{A_p}{x_{n-p}} \right\}, \quad n \geq 0, \] (3)

where \(A_1 \geq 0, A_2 \geq 0, \ldots, A_p \geq 0, 0 < \alpha_1 \leq 1, \ 0 < \alpha_2 \leq 1, \ldots, 0 < \alpha_p \leq 1, \ \max \{ \alpha_1, \alpha_2, \ldots, \alpha_p \} = 1. \)

Conjecture 1. Let \(\alpha_q = 1 \). If \(A_q > \max \{ A_j : 1 \leq j \leq p, j \neq q \} \), then every positive solution of the Eq. (3) is eventually periodic with period \(T=2q \).
PRELIMINARIES

In [15], the following difference equation was investigated

\[x_{n+1} = \max \left\{ \frac{A}{x_{n-k}}, \frac{B}{x_{n-m}} \right\}, n = 0, 1, \ldots, \]

(4)

where \(A, B \) are any positive real numbers and \(m, k \in \mathbb{N} \). The following result was given.

Theorem 1. Let \(A, B \in (0, \infty) \) and \(m, k \in \mathbb{N} \). Then there exists a positive integer \(T \) such that every positive solution \(\{x_n\} \) of the Eq. (4) is eventually periodic with period \(T \).

In addition, the period \(T \) determined as follows:

\[T = 2k \text{ if either } A > B \text{ or } A = B \text{ and } m = 3k, \]
\[T = 2m \text{ if either } A < B \text{ or } A = B \text{ and } k = 3m, \]
\[T = k + m \text{ if } A = B \text{ and neither } k = 3m \text{ nor } m = 3k. \]

It has been seen easily that for \(k = 2 \) and \(m = 3 \), the Eq. (4) corresponds to the Eq. (1) with \(\alpha = 1 \).

It is easy to see that the solutions of the Eq. (1) are \(x_n = 0, x_n = \frac{B}{x_{n-2}} \) and \(x_n = \frac{A}{x_{n-3}} \) respectively, in the cases \(A = B = 0, A = 0 \) and \(B \neq 0 \) and \(A \neq 0 \) and \(B = 0 \).

THE CASE A = B

Let \(x_n = \sqrt{A} C^n \) and \(0 < C < 1 \) for \(n \geq -3 \). This substitution transforms the Eq. (1) into the difference equation

\[y_n = \min \left\{ -y_{n-2}, -\alpha y_{n-3} \right\}, \quad n \geq 0, \]

(5)

where \(0 < \alpha < 1 \).

Lemma 1. Let \(\{y_n\} \) be a solution of the Eq. (5). Then,

\[|y_n| \leq \max \{|y_{n-2}|, \alpha |y_{n-3}|\} \]

(6)

for all \(n \geq 0 \).

Theorem 2. If \(\{x_n\} \) is a positive solution of the Eq. (1), then \(\{x_n\} \) approaches \(\bar{x} = \sqrt{B} \).

THE CASE A < B

We consider the Eq. (1), where \(0 < \alpha < 1 \) and \(0 < A < B \). Let \(x_n = \sqrt{B} c^n, n \geq -3 \). Then, we have the difference equation

\[z_n = \min \left\{ 1 - z_{n-2}, -\alpha z_{n-3} \right\}, \quad n \geq 0, \]

(7)

where the initial conditions \(z_{-1}, z_{-2}, z_{-3} \) are real numbers and \(C = \frac{A}{B} \).

Lemma 2. Let \(\{z_n\} \) be a solution of Eq. (7). Then,

\[|z_n| \leq \max \{|z_{n-2}| - 1, \alpha |z_{n-3}|\} \]

(8)

for all \(n \geq 0 \).

Theorem 3. If \(\{x_n\} \) is a positive solution of the Eq. (1), then \(\{x_n\} \) approaches \(\bar{x} = \sqrt{B} \).

THE CASE A > B

The substitution \(x_n = \sqrt{B} C^n, n \geq -3 \), transforms the Eq. (1) to the following difference equation

\[w_n = \max \left\{ 1 - w_{n-2}, -\alpha w_{n-3} \right\}, \quad n \geq 0, \]

(9)

where the initial conditions are real numbers and \(C = \frac{A}{B} \).

Theorem 4. Every positive solution of the Eq. (1) in the case \(A > B \) is eventually periodic with period 4.
REFERENCES