Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter
Yükleniyor...
Dosyalar
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SpringerOpen (part of Springer Nature)
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, we consider the operator L generated in L-2(R+) by the Sturm-Liouville equation -y '' + q(x)y = lambda(2)y, chi is an element of R+ = [0,infinity), and the boundary condition (alpha(0) + alpha(1)lambda + alpha(2)(2 lambda))y' (0) - (beta(0) + beta(1)lambda + beta(2)lambda(2))y(0) = 0, where q is a complex-valued function, alpha(i), beta(i) is an element of C, i = 0, 1, 2, and lambda is an eigenparameter. Under the conditions q, q' is an element of AC((R)+), lim(x ->infinity) vertical bar q(x)vertical bar + vertical bar q'(x)vertical bar = 0, sup(chi is an element of R+) [e(epsilon)root(chi)vertical bar q ''(chi)vertical bar] < infinity, epsilon > 0, using the uniqueness theorems of analytic functions, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.
Açıklama
WOS:000349235300007
Anahtar Kelimeler
Sturm-Liouville Equations, Eigenparameter, Eigenvalues, Spectral Singularities
Kaynak
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
Sayı
Künye
Yokuş, N., Koprubasi, T. (2015). Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter. Journal of Inequalities and Applications, 2015, 1, 1-7.