Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter

Yükleniyor...
Küçük Resim

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SpringerOpen (part of Springer Nature)

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper, we consider the operator L generated in L-2(R+) by the Sturm-Liouville equation -y '' + q(x)y = lambda(2)y, chi is an element of R+ = [0,infinity), and the boundary condition (alpha(0) + alpha(1)lambda + alpha(2)(2 lambda))y' (0) - (beta(0) + beta(1)lambda + beta(2)lambda(2))y(0) = 0, where q is a complex-valued function, alpha(i), beta(i) is an element of C, i = 0, 1, 2, and lambda is an eigenparameter. Under the conditions q, q' is an element of AC((R)+), lim(x ->infinity) vertical bar q(x)vertical bar + vertical bar q'(x)vertical bar = 0, sup(chi is an element of R+) [e(epsilon)root(chi)vertical bar q ''(chi)vertical bar] < infinity, epsilon > 0, using the uniqueness theorems of analytic functions, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities.

Açıklama

WOS:000349235300007

Anahtar Kelimeler

Sturm-Liouville Equations, Eigenparameter, Eigenvalues, Spectral Singularities

Kaynak

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

Sayı

Künye

Yokuş, N., Koprubasi, T. (2015). Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter. Journal of Inequalities and Applications, 2015, 1, 1-7.