Dopant engineering for spiro-ometad hole-transporting materials towards efficient perovskite solar cells

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

John Wiley and Sons Inc.

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

One of the most prominent hole-transporting material (HTM) for hybrid perovskite solar cells has been 2,2″,7,7″-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD), which is commonly doped with metal bis(trifluoromethylsulfonyl)imide (M(TFSI)n) salts that contribute to generating the active radical cation HTM species. The underlying role of the metal cation, however, remains elusive. Here, the effect of metal cations (M = Li, Zn, Ca, Cu, and Sr) on doping spiro-OMeTAD is analyzed by a combination of techniques, including electron paramagnetic resonance spectroscopy and cyclic voltammetry, which is complemented by photovoltaic device and hole mobility analysis. As a result, the authors reveal the superiority of Zn(TFSI)2 salts in device performances as compared to the others, including redox-active Cu(TFSI)2. This analysis thereby unravels new design principles for dopant engineering in HTMs for hybrid perovskite photovoltaics.

Açıklama

WOS:000682446800001

Anahtar Kelimeler

Hole Mobility, Hole Transport Materials, M-TFSI N, P-Type Dopants, Photovoltaics

Kaynak

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

Sayı

Künye

Seo, J. -., Akın, S., Zalibera, M., Preciado, M. A. R., Kim, H. -., Zakeeruddin, S. M., . . . Grätzel, M. (2021). Dopant engineering for spiro-ometad hole-transporting materials towards efficient perovskite solar cells. Advanced Functional Materials, doi:10.1002/adfm.202102124