A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis
| dc.authorid | 0000-0001-7549-0137 | en_US |
| dc.contributor.author | Aslan, Muhammet Fatih | |
| dc.date.accessioned | 2022-11-08T08:22:03Z | |
| dc.date.available | 2022-11-08T08:22:03Z | |
| dc.date.issued | 2022 | en_US |
| dc.department | KMÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
| dc.description | WOS:000880145900003 | en_US |
| dc.description | PubMed ID36311473 | en_US |
| dc.description.abstract | This paper aims to diagnose COVID-19 by using Chest X-Ray (CXR) scan images in a deep learning-based system. First of all, COVID-19 Chest X-Ray Dataset is used to segment the lung parts in CXR images semantically. DeepLabV3+ architecture is trained by using the masks of the lung parts in this dataset. The trained architecture is then fed with images in the COVID-19 Radiography Database. In order to improve the output images, some image preprocessing steps are applied. As a result, lung regions are successfully segmented from CXR images. The next step is feature extraction and classification. While features are extracted with modified AlexNet (mAlexNet), Support Vector Machine (SVM) is used for classification. As a result, 3-class data consisting of Normal, Viral Pneumonia and COVID-19 class are classified with 99.8% success. Classification results show that the proposed method is superior to previous state-of-the-art methods. | en_US |
| dc.identifier.citation | Aslan, M. F. (2022). A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis. Chemometrics and Intelligent Laboratory Systems, 231 doi:10.1016/j.chemolab.2022.104695 | en_US |
| dc.identifier.doi | 10.1016/j.chemolab.2022.104695 | |
| dc.identifier.issn | 0169-7439 | |
| dc.identifier.pmid | 36311473 | |
| dc.identifier.scopus | 2-s2.0-85140806756 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.chemolab.2022.104695 | |
| dc.identifier.uri | https://hdl.handle.net/11492/6736 | |
| dc.identifier.volume | 231 | en_US |
| dc.identifier.wos | WOS:000880145900003 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Sceince | |
| dc.indekslendigikaynak | Scopus | |
| dc.indekslendigikaynak | PubMed | |
| dc.institutionauthor | Aslan, Muhammet Fatih | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | en_US |
| dc.relation.journal | Chemometrics and Intelligent Laboratory Systems | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | AlexNet | en_US |
| dc.subject | Convolutional Neural Networks | en_US |
| dc.subject | COVID-19 | en_US |
| dc.subject | DeepLabV3+ | en_US |
| dc.subject | Support Vector Machine | en_US |
| dc.subject | Semantic Segmentation | en_US |
| dc.title | A robust semantic lung segmentation study for CNN-based COVID-19 diagnosis | en_US |
| dc.type | Article |












