Temporal action segmentation for video encryption
| dc.contributor.author | Gao, Suo | |
| dc.contributor.author | Iu, Herbert Ho-Ching | |
| dc.contributor.author | Mou, Jun | |
| dc.contributor.author | Erkan, Uğur | |
| dc.contributor.author | Liu, Jiafeng | |
| dc.contributor.author | Wu, Rui | |
| dc.contributor.author | Tang, Xianglong | |
| dc.date.accessioned | 2025-01-12T17:19:41Z | |
| dc.date.available | 2025-01-12T17:19:41Z | |
| dc.date.issued | 2024 | |
| dc.department | KMÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| dc.description.abstract | Videos contain temporal information, enabling them to capture the dynamic changes of actions and provide richer visual effects. Traditional video encryption methods involve decomposing videos into frames and encrypting them frame by frame, which results in significant resource consumption. This paper proposes a video encryption method based on temporal action segmentation. This methodology involves the identification and extraction of pivotal frames from a video dataset, followed by the encryption of these significant key frames. This approach serves to enhance the efficacy of the video encryption algorithm. The method consists of three modules. The first module uses temporal action segmentation to classify video frames and extract important frames for the second module's input. The second module encrypts the extracted key frames using a chaos-based encryption algorithm, thereby reducing the time cost of video encryption. The third module outputs the encrypted video. During the encryption process, a large amount of key stream is required. To address this, the paper introduces a new pseudo-random sequence generation method called two-dimensional Gramacy&Lee map (2D-GLM). Comprehensive comparative analysis clearly demonstrates that compared to other systems, 2D-GLM exhibits superior performance and can generate a large number of high-performance pseudo-random sequences. The proposed algorithm is tested on GTEA, and the simulation results demonstrate that it can accomplish video encryption tasks with high security. | |
| dc.description.sponsorship | National Natural Science Founda-tion of China [61672190]; China Scholarship Council (CSC) [CSC202306120290] | |
| dc.description.sponsorship | Acknowledgments This research is supported by the National Natural Science Founda-tion of China (No. 61672190) ; China Scholarship Council (CSC) , No. CSC202306120290. | |
| dc.identifier.citation | Gao, S., Iu, H. H.-C., Mou, J., Erkan, U., Liu, J., Wu, R., & Tang, X. (2024). Temporal action segmentation for video encryption. Chaos, Solitons and Fractals: The Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 183. https://doi.org/10.1016/j.chaos.2024.114958 | |
| dc.identifier.doi | 10.1016/j.chaos.2024.114958 | |
| dc.identifier.issn | 0960-0779 | |
| dc.identifier.issn | 1873-2887 | |
| dc.identifier.scopus | 2-s2.0-85192228470 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.chaos.2024.114958 | |
| dc.identifier.uri | https://hdl.handle.net/11492/10157 | |
| dc.identifier.volume | 183 | |
| dc.identifier.wos | WOS:001239973900001 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Sceince | |
| dc.indekslendigikaynak | Scopus | |
| dc.institutionauthor | Erkan, Uğur | |
| dc.institutionauthorid | Erkan, Uğur/0000-0002-2481-0230 | |
| dc.language.iso | en | |
| dc.publisher | Pergamon-Elsevier Science Ltd | |
| dc.relation.ispartof | Chaos Solitons & Fractals | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Cryptography | |
| dc.subject | Video Encryption | |
| dc.subject | Chaos | |
| dc.subject | Temporal Action Segmentation | |
| dc.title | Temporal action segmentation for video encryption | |
| dc.type | Article |












