INDEEDopt: a deep learning-based ReaxFF parameterization framework

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Nature Research

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Empirical interatomic potentials require optimization of force field parameters to tune interatomic interactions to mimic ones obtained by quantum chemistry-based methods. The optimization of the parameters is complex and requires the development of new techniques. Here, we propose an INitial-DEsign Enhanced Deep learning-based OPTimization (INDEEDopt) framework to accelerate and improve the quality of the ReaxFF parameterization. The procedure starts with a Latin Hypercube Design (LHD) algorithm that is used to explore the parameter landscape extensively. The LHD passes the information about explored regions to a deep learning model, which finds the minimum discrepancy regions and eliminates unfeasible regions, and constructs a more comprehensive understanding of physically meaningful parameter space. We demonstrate the procedure here for the parameterization of a nickel–chromium binary force field and a tungsten–sulfide–carbon–oxygen–hydrogen quinary force field. We show that INDEEDopt produces improved accuracies in shorter development time compared to the conventional optimization method.

Açıklama

WOS:000652227400001

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

7

Sayı

1

Künye

Sengul, M. Y., Song, Y., Nayir, N., Gao, Y., Hung, Y., Dasgupta, T., & van Duin, A. C. T. (2021). INDEEDopt: A deep learning-based ReaxFF parameterization framework. Npj Computational Materials, 7(1) doi:10.1038/s41524-021-00534-4