The spectrum of discrete Dirac operator with a general boundary condition
| dc.authorid | 0000-0001-9753-0101 | en_US |
| dc.authorid | 0000-0002-5327-2312 | en_US |
| dc.contributor.author | Coşkun, Nimet | |
| dc.contributor.author | Yokuş, Nihal | |
| dc.date.accessioned | 2020-09-07T12:37:27Z | |
| dc.date.available | 2020-09-07T12:37:27Z | |
| dc.date.issued | 2020 | en_US |
| dc.department | KMÜ, Kamil Özdağ Fen Fakültesi, Matematik Bölümü | en_US |
| dc.description | WOS:000561107900002 | en_US |
| dc.description.abstract | In this paper, we aim to investigate the spectrum of the nonselfadjoint operator L generated in the Hilbert space l2(N,C2) by the discrete Dirac system <disp-formula id="Equa">{<mml:mtable><mml:mtr><mml:mtd columnalign="left">yn+1(2)</mml:msubsup>-yn(2)</mml:msubsup>+pnyn(1)</mml:msubsup>=lambda yn(1)</mml:msubsup>,</mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign="left">-yn(1)</mml:msubsup>+yn-1(1)+<mml:msub>qnyn(2)=lambda yn(2),</mml:mtd></mml:mtr></mml:mtable><mml:mspace width="1em"></mml:mspace>n is an element of N,<graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13662_2020_2851_Article_Equa.gif" position="anchor"></graphic></disp-formula> and the general boundary condition <disp-formula id="Equb"><mml:munderover>Sigma n=0 infinity</mml:munderover><mml:msub>hn<mml:msub>yn=0,<graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13662_2020_2851_Article_Equb.gif" position="anchor"></graphic></disp-formula> where lambda is a spectral parameter, Delta is the forward difference operator, (<mml:msub>hn) is a complex vector sequence such that <mml:msub>hn=(hn(1),hn(2)), where hn(i)is an element of l1(N)l2(N), i=1,2, and h0(1)not equal 0. Upon determining the sets of eigenvalues and spectral singularities of L, we prove that, under certain conditions, L has a finite number of eigenvalues and spectral singularities with finite multiplicity. | en_US |
| dc.identifier.citation | Coşkun, N., Yokuş, N. (2020). The spectrum of discrete Dirac operator with a general boundary condition. Advances in Difference Equations, 2020, 1, 1-9. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-02851-2 | |
| dc.identifier.endpage | 9 | en_US |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-85089083538 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.startpage | 1 | en_US |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-02851-2 | |
| dc.identifier.uri | https://hdl.handle.net/11492/3649 | |
| dc.identifier.volume | 2020 | en_US |
| dc.identifier.wos | WOS:000561107900002 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Sceince | |
| dc.indekslendigikaynak | Scopus | |
| dc.institutionauthor | Coşkun, Nimet | |
| dc.institutionauthor | Yokuş, Nihal | |
| dc.language.iso | en | |
| dc.publisher | Hindawi | en_US |
| dc.relation.journal | Advances in Difference Equations | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Eigenparameter | en_US |
| dc.subject | Spectral Analysis | en_US |
| dc.subject | Eigenvalues | en_US |
| dc.subject | Spectral Singularities | en_US |
| dc.subject | Discrete Equation | en_US |
| dc.subject | Dirac Equation | en_US |
| dc.subject | 39A10 | en_US |
| dc.subject | 39A12 | en_US |
| dc.subject | 47A10 | en_US |
| dc.subject | 47A75 | en_US |
| dc.title | The spectrum of discrete Dirac operator with a general boundary condition | en_US |
| dc.type | Article |












