Yazar "Demir, Bilal" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Folic-acid-modified conducting polymer: electrochemical detection of the cell attachment(Wiley-VCH Verlag GMBH, 2016) Azak, Hacer; Barlas, Fırat Barış; Yıldız, Hüseyin Bekir; Güleç, Kadri; Demir, Bilal; Demirkol, Dilek Odacı; Timur, SunaHere, postfunctionalization and bioapplication of a pi-conjugated polymer named 4-[4H-dithieno(3,2-b:2',3'-d)pyrrol-4-yl]aniline (DTP-aryl-NH2) are reported, which is successfully synthesized via electropolymerization onto the glassy carbon electrode. Folic acid (FA) is used to modify the amino functional polymer via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide chemistry for the further steps. The selective adhesion of folate receptor positive cells on the surface is followed by the electrochemical methods. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize stepwise modification of the electroactive surface. After optimization studies such as scan rate during the polymer deposition, FA amount for the efficient surface targeting, incubation time with the cells etc., analytical characterization is carried out. The surface morphologies at each step are imaged by using fluorescence microscopy.Öğe A novel immobilization matrix for the biosensing of phenol: self assembled monolayers of calixarenes(Walter De Gruyter Gmbh, 2017) Taşcı, Filiz; Sayın, Serkan; Seleci, Didem Ağ; Demir, Bilal; Azak, Hacer; Yıldız, Hüseyin Bekir; Demirkol, Dilek OdaciAim: The development of calixarene based phenol biosensor. Methods: This study describes the application of a calixarene derivative, 5,17-diamino-25,27-bis(3-thiol-1- oxypropane)-26,28-dihydroxycalix[4] arene (HS-Calix-NH2) which has both amino and thiol functionalities, in the practical surface modifications for biomolecule binding. The structure of HS-Calix-NH2 allows easy interaction with Au surface and one-step biomolecule immobilization. Self-assembled monolayers (SAMs) of p-amino-functionalized mercaptoalkylcalixarene (HS-Calix-NH2) were formed onto the Au electrode. Then, Laccase (Lac) enzyme was immobilized onto the modified surface by crosslinking with glutaraldehyde (GA). Resulted electrode (HS-Calix-NH2/Lac) was used for the electrochemical analysis of phenolic compounds at -50 mV. Results: The linearity was observed in the range of 0.1-100 mu M and 1.0-100 mu M for catechol and phenol, respectively. The potential use of the biosensor was investigated for phenol analysis in artificial samples which simulate the industrial waste water, which is highly acidic and composed of concentrated salt, without needing any sample pre-treatment step. Conclusion: The prepared Lac biosensor has a potential for rapid, selective and easy detection of phenolic contaminations in samples.












