Yazar "Kaynak, Cevdet" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Behaviour of PLA/POSS nanocomposites: Effects of filler content, functional group and copolymer compatibilization(Sage Publications Ltd, 2021) Zeybek, Yelda Meyva; Kaynak, CevdetThe main purpose of this study was to investigate influences of three parameters on the mechanical and thermal properties of the polylactide (PLA) matrix nanocomposites filled with polyhedral oligomeric silsesquioxane (POSS) particles. For the first parameter of Filler Content, nanocomposites with 1, 3, 5, 7 wt% basic POSS structure were compared. For the second parameter of Functional Group, basic POSS structure having only nonpolar isobutyl groups were compared with three other functionalized POSS structures; i.e. aminopropylisobutyl-POSS (ap-POSS), propanediolisobutyl-POSS (pd-POSS) and octasilane-POSS (os-POSS). Finally, for the third parameter of Copolymer Compatibilization, all specimens were compared before and after their maleic anhydride (MA) grafted copolymer compatibilization. Specimens were produced with twin-screw extruder melt mixing and shaped under compression molding. Various tests and analyses indicated that the optimum filler content for the improved mechanical properties was I wt%; while the optimum structure for strength and modulus was pd-POSS structure, in terms of fracture toughness it was basic POSS structure. Additional use of MA compatibilization was especially effective for the basic POSS and os-POSS particles.Öğe Electrospinning of PLA and PLA/POSS nanofibers: Use of Taguchi optimization for process parameters(Wiley, 2020) Meyva-Zeybek, Yelda; Kaynak, CevdetIt is known that electrospinning is the most practical technique to obtain unique nanofibrous structures, such as neat PLA (polylactide) and PLA filled with POSS (Polyhedral Oligomeric Silsesquioxane) particles. On the other hand, due to the so many different process parameters to consider, production of these fibers are extremely difficult and time consuming. That is, use of a certain statistical optimization technique in the design of experiments would be necessary. Therefore, the main purpose of this study was to determine the optimum electrospinning parameters by applying the Taguchi technique first to neat PLA and then to reveal the applicability of these parameters for the electrospinning of PLA/POSS nanofibers. It was observed that instead of conducting 81 experiments to determine the most significant four optimum process parameters for PLA, use of Taguchi L(9)orthogonal array experiment matrix, that is, conducting only nine experiments, reduced time, labor and material consumption considerably. For the smallest electrospun PLA fiber diameter, the optimum parameters determined were; "PLA solution concentration" of 8% w/v, "solution feeding rate" of 1.8 mL/h, "needle-to-collector distance" of 18 cm, and "applied voltage" of 15 kV. Moreover, it was generally concluded that these same parameters could be also used for the electrospinning of PLA/POSS nanofibers after addition of only 3 wt% KCl salt into the polymer solution.












