Is machine learning redefining the perovskite solar cells?
| dc.authorid | 0000-0001-9852-7246 | en_US |
| dc.contributor.author | Parikh, Nishi | |
| dc.contributor.author | Karamta, Meera R. | |
| dc.contributor.author | Yadav, Neha | |
| dc.contributor.author | Mahdi Tavakoli, Mohammad | |
| dc.contributor.author | Prochowicz, Daniel | |
| dc.contributor.author | Akın, Seçkin | |
| dc.date.accessioned | 2021-08-24T06:58:44Z | |
| dc.date.available | 2021-08-24T06:58:44Z | |
| dc.date.issued | 2022 | en_US |
| dc.department | KMÜ, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü | en_US |
| dc.description | WOS:000701749300011 | en_US |
| dc.description.abstract | Development of novel materials with desirable properties remains at the forefront of modern scientific research. Machine learning (ML), a branch of artificial intelligence, has recently emerged as a powerful technology in optoelectronic devices for the prediction of various properties and rational design of materials. Metal halide perovskites (MHPs) have been at the centre of attraction owing to their outstanding photophysical properties and rapid development in solar cell application. Therefore, the application of ML in the field of MHPs is also getting much attention to optimize the fabrication process and reduce the cost of processing. Here, we comprehensively reviewed different applications of ML in the designing of both MHP absorber layers as well as complete perovskite solar cells (PSCs). At the end, the challenges of ML along with the possible future direction of research are discussed. We believe that this review becomes an indispensable roadmap for optimizing materials composition and predicting design strategies in the field of perovskite technology in the future. | en_US |
| dc.identifier.citation | Parikh, N., Karamta, M., Yadav, N., Mahdi Tavakoli, M., Prochowicz, D., Akın, S., . . . Yadav, P. (2022). Is machine learning redefining the perovskite solar cells? Journal of Energy Chemistry, 66, 74-90. doi:10.1016/j.jechem.2021.07.020 | en_US |
| dc.identifier.doi | 10.1016/j.jechem.2021.07.020 | |
| dc.identifier.endpage | 90 | en_US |
| dc.identifier.issn | 2095-4956 | |
| dc.identifier.scopus | 2-s2.0-85112386494 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 74 | en_US |
| dc.identifier.uri | https://doi.org/10.1016/j.jechem.2021.07.020 | |
| dc.identifier.uri | https://hdl.handle.net/11492/5183 | |
| dc.identifier.volume | 66 | en_US |
| dc.identifier.wos | WOS:000701749300011 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Sceince | |
| dc.indekslendigikaynak | Scopus | |
| dc.institutionauthor | Akın, Seçkin | |
| dc.language.iso | en | |
| dc.publisher | Elsevier B.V. | en_US |
| dc.relation.journal | Journal of Energy Chemistry | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Lead Free Perovskites | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Metal Halide Perovskites | en_US |
| dc.subject | Perovskite Solar Cell | en_US |
| dc.title | Is machine learning redefining the perovskite solar cells? | en_US |
| dc.type | Article |












