Increased reactive carboxyl and free alfa-amino groups from fish type I collagen peptides by Alcalase® hydrolysis exhibit higher antibacterial and antioxidant activities
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
This study aimed to generate low molecular weight peptides (LMWP) from fish collagen type I hydrolysed by increasing activity of Alcalase (R) from 0.0 to 12.0 (AU-A per 100 g) at 55 degrees C and 7.4 of pH for 3 h 40 min. The results showed that all enzyme activity levels caused 34-55 % reductions in protein recovery, 1.0-3.0 folds' increase in free alpha-amino groups and 1.7-3.2 folds' increase in carboxyl groups. Degree of hydrolysis ranged from 20 to 30 % with increasing enzyme activity. The number average molecular weight significantly reduced from 3200 g/mol in 0.0 AU-A per 100 g enzyme activity to 1151, 1398, 1175, 1040 and 1246 g/mol in 2.4, 4.8, 7.2, 9.6 and 12.0 AU-A per 100 g enzyme activities, respectively. Depending upon enzyme activity level, the produced LMWP with reactive carboxyl and amino end-groups exhibited 2.5- to 4.0-fold increases in antioxidant capacity and 1.0-3.5 log cfu/ml inhibition of four pathogen bacteria. Highest inhibition of 2.5 log cfu/ml in Escherichia coli was obtained from 2.4 AU-A per 100 g enzyme activity and 3.5 log cfu/ml in Listeria monocytogenes from 9.6 and 12.0 AU-A per 100 g enzyme activity levels. Infrared spectroscopy clearly identified reactive end-groups and showed remarkably differences in molar absorptivity of various molecular regions between non-enzyme and enzyme treated collagen type I molecule. A 9.6 and 12.0 AU-A per 100 g enzyme activity levels were found optimally effective to generate LMWP. In conclusion, LMWP exhibited high antioxidant and antibacterial activity due to increased functional reactive end-groups, and these bio-active peptides may have greater potentialities in various food and pharmaceutical applications.












