A comparative evaluation of Bayes, functions, trees, meta, rules and lazy machine learning algorithms for the discrimination of different breeding lines and varieties of potato based on spectroscopic data

dc.authorid0000-0003-0238-9606en_US
dc.authorid0000-0001-7549-0137en_US
dc.contributor.authorSlavova, Vanya
dc.contributor.authorRopelewska, Ewa
dc.contributor.authorSabancı, Kadir
dc.contributor.authorAslan, Muhammet Fatih
dc.contributor.authorNacheva, Emilia K.
dc.date.accessioned2022-03-29T13:29:56Z
dc.date.available2022-03-29T13:29:56Z
dc.date.issued2022en_US
dc.departmentKMÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.descriptionWOS:000770536000001en_US
dc.description.abstractThe objective of this study was to compare the usefulness of machine learning algorithms for distinguishing the potato lines and varieties based on selected fluorescence spectroscopic data. The potato tubers belonging to two breeding lines S 617 and S 716 and two varieties Trezor and Sante were examined. The discrimination analysis was performed using machine learning algorithms from different groups. The average accuracies, confusion matrices, and the F-Measure, Precision, PRC (Precision-Recall) Area, ROC (Receiver Operating Characteristic) Area and MCC (Matthews Correlation Coefficient) values obtained for models built using different algorithms were compared. The breeding lines and varieties of potato were discriminated with very high average accuracies equal up to 95% for the SMO (Sequential Minimal Optimization) algorithms (group of Functions), Naive Bayes (group of Bayes), Hoeffding Tree (group of Trees), Multi Class Classifier (group of Meta), PART (group of Rules), IBk (Instance-Based Learning with parameter k) (group of Lazy). Models developed with the use of selected algorithms allowed for distinguishing some potato lines and varieties with an accuracy of up to 100% and the values of the F-Measure, Precision, PRC Area, ROC Area and MCC reaching 1.000.en_US
dc.identifier.citationSlavova, V., Ropelewska, E., Sabanci, K., Aslan, M. F., & Nacheva, E. (2022). A comparative evaluation of bayes, functions, trees, meta, rules and lazy machine learning algorithms for the discrimination of different breeding lines and varieties of potato based on spectroscopic data. European Food Research and Technology, doi:10.1007/s00217-022-04003-0en_US
dc.identifier.doi10.1007/s00217-022-04003-0
dc.identifier.issn1438-2377
dc.identifier.scopus2-s2.0-85126548680
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s00217-022-04003-0
dc.identifier.urihttps://hdl.handle.net/11492/6215
dc.identifier.wosWOS:000770536000001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Sceince
dc.indekslendigikaynakScopus
dc.institutionauthorSabancı, Kadir
dc.institutionauthorAslan, Muhammet Fatih
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.journalEuropean Food Research and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA comparative evaluation of Bayes, functions, trees, meta, rules and lazy machine learning algorithms for the discrimination of different breeding lines and varieties of potato based on spectroscopic dataen_US
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Slavova, Vanya.pdf
Boyut:
1.02 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: