MLMQ-IR: Multi-label multi-query image retrieval based on the variance of Hamming distance
| dc.authorscopusid | 57218549439 | |
| dc.authorscopusid | 36705310900 | |
| dc.authorscopusid | 57188968069 | |
| dc.authorscopusid | 57210433890 | |
| dc.contributor.author | Akbacak E. | |
| dc.contributor.author | Toktas A. | |
| dc.contributor.author | Erkan U. | |
| dc.contributor.author | Gao S. | |
| dc.date.accessioned | 2024-01-22T12:22:36Z | |
| dc.date.available | 2024-01-22T12:22:36Z | |
| dc.date.issued | 2024 | |
| dc.department | KMÜ | en_US |
| dc.description.abstract | Image retrieval (IR) methods extract the most relevant images to the query images from an image database. The existing IR methods, which retrieve images with a low degree of similarity, use computationally expensive approaches. In this study, a novel Multi-Label Multi-Query IR (MLMQ-IR) method based on the variance of Hamming distance is presented for the query of multiple images having multiple labels. The MLMQ-IR uses deep learning-based hashing code generation with ResNet50 structure. The variance evaluates the minimum variation of the distances between the query and database images, providing the trade-off images according to the center of Pareto space. Moreover, the MLMQ-IR exploits a new Triple Loss Multi-Label Hashing (TLMH) depending on binary cross-entropy loss and bit-balance loss functions. The MLMQ-IR is compared with recent multi-label and multi-query methods through MIRFLICKR-25 K, MS-COCO and NUS-WIDE datasets in terms of three well-known metrics, and the methods are ranked with succussed sorting. As a result, the MLMQ-IR method has the best avg. mean rank with 1.86. The results manifest that the MLMQ-IR provides the most similar retrieved images to the query images owing to utilizing the variance which is the efficient and fast IR approach. © 2023 Elsevier B.V. | en_US |
| dc.description.sponsorship | The numerical calculations reported in this paper were fully performed at Bursa Technical University High-Performance Computing Lab. | en_US |
| dc.identifier.doi | 10.1016/j.knosys.2023.111193 | |
| dc.identifier.issn | 09507051 | |
| dc.identifier.scopus | 2-s2.0-85177215352 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.knosys.2023.111193 | |
| dc.identifier.uri | https://hdl.handle.net/11492/8062 | |
| dc.identifier.volume | 283 | en_US |
| dc.identifier.wos | WOS:001165684500001 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Sceince | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Elsevier B.V. | en_US |
| dc.relation.ispartof | Knowledge-Based Systems | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.snmz | kmusnmz | |
| dc.subject | CNN | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Hash code | en_US |
| dc.subject | Image retrieval | en_US |
| dc.subject | Multi-label image retrieval | en_US |
| dc.subject | Multi-query image retrieval | en_US |
| dc.subject | Variance | en_US |
| dc.subject | Economic and social effects | en_US |
| dc.subject | Hamming distance | en_US |
| dc.subject | Hash functions | en_US |
| dc.subject | Image retrieval | en_US |
| dc.subject | Query processing | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Hash code | en_US |
| dc.subject | Image database | en_US |
| dc.subject | Label images | en_US |
| dc.subject | Multi-label image retrieval | en_US |
| dc.subject | Multi-labels | en_US |
| dc.subject | Multi-query image retrieval | en_US |
| dc.subject | Query images | en_US |
| dc.subject | Retrieval methods | en_US |
| dc.subject | Variance | en_US |
| dc.subject | Deep learning | en_US |
| dc.title | MLMQ-IR: Multi-label multi-query image retrieval based on the variance of Hamming distance | en_US |
| dc.type | Article |












