Toward a mechanistic understanding of the formation of 2D-GaNxin epitaxial graphene

dc.authorid0000-0002-3621-2481en_US
dc.contributor.authorBansal, Anushka
dc.contributor.authorNayır, Nadire
dc.contributor.authorWang, Ke
dc.contributor.authorRondomanski, Patrick
dc.contributor.authorSubramanian, Shruti
dc.contributor.authorKumari, Shalini
dc.date.accessioned2023-01-19T06:54:08Z
dc.date.available2023-01-19T06:54:08Z
dc.date.issued2023en_US
dc.departmentKMÜ, Kamil Özdağ Fen Fakültesi, Fizik Bölümüen_US
dc.descriptionWOS:000907017300001 PubMed ID:36580283
dc.description.abstractUltrathin 2D-GaNx can be formed by Ga intercalation into epitaxial graphene (EG) on SiC followed by nitridation in ammonia. Defects in the graphene provide routes for intercalation, but the nature and role of the defects have remained elusive. Here we examine the influence of graphene layer thickness and chemical functionalization on Ga intercalation and 2D-GaNx formation using a combination of experimental and theoretical studies. Thin buffer layer regions of graphene near steps on SiC readily undergo oxygen functionalization when exposed to air or a He/O2 plasma in contrast to thicker regions which are not chemically modified. Oxygen functionalization is found to inhibit Ga intercalation leading to accumulation of Ga droplets on the surface. In contrast, Ga readily intercalates between EG and SiC in the thicker graphene regions that do not contain oxygen. When NH3 annealing is carried out immediately after Ga exposure, 2D-GaNx formation is observed only in the oxygen-functionalized regions, and Ga intercalated under thicker nonfunctionalized graphene does not convert to GaNx. Density functional theory calculations demonstrate that oxygen functionalization of graphene alters the binding energy of Ga and NH3 species to the graphene surface. The presence of hydroxyl groups on graphene inhibits binding of Ga to the surface; however, it enhances the chemical reactivity of the graphene surface to NH3 which, in turn, enhances Ga binding and facilitates the formation of 2D-GaNx. By modifying the EG process to produce oxygen-functionalized buffer layer graphene, uniformly intercalated 2D-GaNx is obtained across the entire substrate surface.en_US
dc.identifier.citationBansal, A., Nayir, N., Wang, K., Rondomanski, P., Subramanian, S., Kumari, S., . . . Redwing, J. M. (2022). Toward a mechanistic understanding of the formation of 2D-GaNxin epitaxial graphene. ACS Nano, doi:10.1021/acsnano.2c07091en_US
dc.identifier.doi10.1021/acsnano.2c07091.
dc.identifier.issn1936-0851
dc.identifier.pmid36580283
dc.identifier.scopus2-s2.0-85145467914
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acsnano.2c07091.
dc.identifier.urihttps://hdl.handle.net/11492/6933
dc.identifier.wosWOS:000907017300001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Sceince
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorNayır, Nadire
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.journalACS Nanoen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject2D Materialsen_US
dc.subjectDefectsen_US
dc.subjectEpitaxial Grapheneen_US
dc.subjectGanen_US
dc.subjectIntercalationen_US
dc.subjectMetalorganic Chemical Vapor Depositionen_US
dc.titleToward a mechanistic understanding of the formation of 2D-GaNxin epitaxial grapheneen_US
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Bansal, Anushka 2023.pdf
Boyut:
1.41 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: