Highly efficient photocatalyst based on Zn2-xBaxSnO4 alloying nanoparticles with enhanced photocatalytic activity
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
In this study, an effective Zn2-xBaxSnO4 alloying nanoparticles were hydrothermally designed with a series of barium cation as alloying dopant and utilized as a photocatalyst to decompose the rhodamine B which causes harmful effects on humans such as allergic dermatitis, skin irritation, mutation, and cancer. It is noteworthy that the Zn1.988Ba0.012SnO4 alloying-based catalyst exhibited more than 99 % degradation in only 140 min in wastewater than barium-free ternary oxide. Moreover, the reaction rate of Zn1.988Ba0.012SnO4 alloying-based catalyst was enhanced to 0.032 min-1 compared with barium-free ternary oxide (0.0179 min-1). Based on scavenger trapping experiments, hydroxyl radicals are the main reactive oxygen species responsible for photocatalytic activity of Zn1.988Ba0.012SnO4 alloying-based catalyst. Besides, the photocatalytic rate was maintained 94.89 % after 5th cycle. This research not only provides a novel strategy for developing alloying-based catalysts but also unveils their potential in photoelectrochemistry and photocatalysis.












